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DESIGK AN0 DYMMIC TESTING OF AN 

CONTROL SYSTEM FOIi TI OX3ITING 
ASTRCINOMICAL OBSERVATORY 

ULTRA-HIGEI ACC'JEiACY SATELLITE STAXLIZATION AnrD 

Introduction 

The Orbiting Astronomical Observatory, o r  the OAO, i s  the la rges t  s c i en t i f i c  

s a t e l l i t e  now under development fo r  the National Aeronautics and Space Administra- 

t ion.  Figure 1 i s  an artists conception of tke OAO i n  orb i t .  

The OAO program objective i s  the launching of a ser ies  of very highly staba- 

l i zed  unmanned observatories beginning i n  1964. 

3500 pounds and w i l l  contain approximately 1000 pounds of advanced sc i en t i f i c  

equipment. 

ous stars, nebulae, and i n t e r s t e l l a r  matter; later experiments will l i k e l y  inves- 

t i ga t e  other regions of the electromagnetic spectrum. 

Each s a t e l l i t e  w i l l  weigh over 

I n i t i a l  launches will investigate the u l t rav io le t  emissions of vari-  

Several face ts  of the s a t e l l i t e ' s  design, as well as various aspects of 

s c i e n t i f i c  program, have already been discussed i n  technical t r ea t i s e s  and maga- 

zine a r t i c l e s ;  however, szbstant ia l  de ta i l s  of the design and operation of the 

OAO's  s tab i l iza t ion  and control system have not been published p r io r  t o  t h i s  

meeting. The s tab i l iza t ion  system fo r  tke 6AO i s  designed t o  meet accuracy 

requirements which ape orders of magnitude more demanding than those of any 

previous specification. 

now under deve1opmer;t. 

vanced. 

me UAG may well be the most highly s tabi l ized s a t e l l i t e  

Design of the OAO s tab i l iza t ion  system i s  now well ad- 

Models of a l l  components have been constructed and under t e s t  f o r  some 

t i m e .  F i n d  qualification t e s t s ,  which w i l l  ver i fy  tha t  the system has m e t  i t s  

design objectives, w i l l  begin shortly. 

c r a f t  design and present a detailed description of the program and f a c i l i t i e s  

A t  tinis time we w i l l  discuss-the space- 
I 

f o r  dynamic tes t ing  of the OAO. 



- 2 -  

System Design 

The functions of the OAO's s tab i l iza t ion  and control system are  threefold: 

(1) Fi r s t ,  the system must s tabi l ize  and or ient  the spacecraft following 

booster separation. 

Second, the system must be capable of slewing the satell i te t o  point 

t o  any desired location on the ce l e s t i a l  sphere as dictated by the 

sc i en t i f i c  objectives of the mission. 

Lastly, the s tab i l iza t ion  system must be able t o  maintain given a t t i -  

tudes with the required precision f o r  long periods of t i m e .  

( 2 )  

(3) 

In  order t o  perform these functions, a system design has been developed 

The which employs a var ie ty  of sensors a.cd actuators, as shown i n  Figure 2. 

sensors, which provide the necessary irformation related t o  OAO orientation i n  

space, include star trackers (of two types), solar  trackers, a TV system, r a t e  

gyros, and magnetometers. Tie actuators, which are  used t o  torque the observa- 

tory, include both f ine  and coarse ine r t i a  wheels, a gas j e t  system, and a mag- 

net ic  torquing system. 

associated electronics uni t  called a "signal processor"; and with each of the 

actuators there is, i n  geieral ,  an associated electronics uni t  called a "controller". 

Also important t o  the s tab i l iza t ion  system i s  a "programmer", a logic  uni t  which 

provides proper sequencing f o r  t5e control system. 

Figure 3 i s  a fucctional block diagram of the s tab i l iza t ion  system, indicat- 

The performance requirements of each 

With each of the sensors t'nere is ,  i n  general, an 

ing the various components of the system. 

of the uni ts ,  as well as  the individual functions they perform, w i l l  become evi- 

dent as we discuss the system operation i n  some de ta i l .  

' C  
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I n i t i a l  Stabi l izat ion and Orientation 

The i n i t i a l  s tab i l iza t ion  and orientation mode begins immediately following 

separation from the  booster and ends when the  OAO's opt ica l  (longitudinal) axis 

i s  aligned with the  sunline t o  within tO.025 degree of a r c  and the  star t rackers  - 
have locked onto t h e i r  guide stars. This operation i s  performed i n  several 

phases. 

t i a l l y  one i n  which the random tumbling r a t e s  following booster separation a re  

The first phase employs the  components shown i n  Figure 4 and i s  essen- 

reduced t o  some desired threshold and coarse solar  acquis i t ion and orientation 

i s  completed. As indicated i n  the  f i g u r e ,  the  rate gyros,  one aligned along 

each control axis,  and coarse solar  sensors are u t i l i zed  i n  t h i s  sequence t o  

control the  OAO's gas j e t  system. The gyros are spring-restrained single-axis 

rate gyros having a capabili ty t o  null body rates t o  within 0.03 degree per 

second. 

The OAO's coarse solar  sensing system consists of eight "coarse" sensors, 

four mounted so as t o  provide displacement information r e l a t ive  t o  the  p i tch  axis  

and f o u r  mounted about the  yaw axis  as shown i n  Figure 5. 

sper ic  f i e l d  of view, w i t h  t he  resu l t  tha t  the  coarse sensing system provides biF 

Each sensor has a hemi- 

a x i a l  control signals f o r  t he  OAO's pitch and yaw axes over t he  en t i r e  ce l e s t i a l  

sphere. 

are attached which pass radiation between 0.6 and l . lmic rons ,  peaking at 0.8 

The solar sensors have s i l icon photosensitive elements. Deep red f i l t e r s  

microns. 

feature of t he  OAO's design i s  t h a t  the outputs of r a t e  gyros and the  solar  sensors 

The actual  outputs of t he  sensors are shown i n  Figure 6. An interest ing 

are combined i n  the  sensor signal processor during t h i s  i n i t i a l  phase. Gains are  

adjusted so  t h a t  a spacecraft angular rate of 0.5 degree per second produces a 

gyro output signal equal t o  the  saturation output of t he  coarse solar  sensors 

which occurs a t  + 5.50 degrees. Following booster separation, the high th rus t  - 
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j e t  system w i l l  reduce the i n i t i a l  spacecraft r a t e s  t o  L-0.5 degree per second 

regardless of the i n i t i a l  angular error. When the spacecraft ra tes  have been 

reduced t o  t h i s  value, the combined signal w i l l  continue the decelerating j e t  

torque if  the s a t e l l i t e  a t t i tude  is  outside of the 55.5 degree proportional 

range of the sensor and the e r ror  angle i s  increasing. 

decreasing, the combined signal w i l l  be zero and the s a t e l l i t e  w i l l  coast i n to  

the sensor's proportional range. Then, as the sensor output decreases, the rate 

gyro signal w i l l  again dominate and command a decelerating torque. 

If the e r ro r  angle i s  

The nitrogen gas j e t  system which i s  operative during this  period i s  the 

OAO's high thrus t  system. 

j e t s  i s  shown i n  schematic form i n  Figure 7. 

i s  contained aboard the OAO i n  a 3500 p s i  system. 

has a thrust of 0.1 pound, and a torque capabili ty of 0.291 foot  pound. 

i n i t i a l  booster separation r a t e s  of 1.0 degree per  second, and w i t h  the OAO 

pointed d i rec t ly  towards the sun, tumbling can be stopped and the OAO turned 180" 

i n  approximately 5 minutes of time. 

The complete system including both high and low thrus t  

Thirty-two pounds of dry  nitrogen 

Each of the high thrust jets 

For 

The first phase of the i n i t i a l  s tab i l iza t ion  and orientation mode i s  com- 

p l e t e  when the spacecraft motion approaches a L-2 degree l i m i t  cycle operation 

w i t h  a residual r a t e  of O,O3 degree per second. L i m i t  cycling i s  centered on 

the sun l i n e  with the aft  end of the spacecraft pointed d i rec t ly  towards the 

sun. 

Phase 2 of the i n i t i a l  sequence, shown i n  Figure 8, can now begin. 

I n  addition t o  the eight coarse solar sensors, the OAO i s  equipped w i t h  a 

The f ine  sensors series of e ight  "fine" solar sensors and a "disable" sensor. 

and disable sensor or "eye" are all mounted on the aft end of the spacecraft 

and are precisely aligned with the spacecraft op t ica l  axis.  

have a limited f i e l d  of view of 10 degrees, while the disable sensor i s  effective 

through angles of L-8 degrees. 

The f ine sensors 
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When the disable eye detects the preseme of the sun i n  i t s  f i e l d  of v i e w  

and the output of the ra te  gyro i s  m i n i m a l ,  the spacecraft programmer automat- 

i c a l l y  switches control of the pi tch and yaw gas je ts  t o  the f ine  sensor system. 

The f ine  i n e r t i a l  wheels are also activated a t  t h i s  t i m e .  

c r a f t  roll motion is  main+ained a t  a low value by outputs from the r o l l  rate 

During phase 2, space- 

gyro. 

aligned with the sun t o  within kO.25 degree and all body axis rates have been 

After approximately 13 minutes have elapsed, the spacecraft roll axis is  

reduced t o  kO.03 degree per second. 

Phase 3 of the i n i t i a l  orientation phase, shown i n  Figure 9, i s  now command- 

ed. The opt ica l  axis continues t o  be controlled t o  kO.025 degree of the sun, but 

a b ias  i s  introduced in to  the roll ra te  output, causing the roll high thrust jets 

t o  f i r e  and accelerate the spacecraft about the roll axis t o  a rate of 0.2 degree 

per second. 

The f m t h  phase of the i n i t i a l  sequence now begins, and f o r  the f irst  time 

the OAO's six primary star trackers come in to  operation. A description of the 

star trackers i s  appropriate a t  t h i s  time. 

The observatory's s ix  main star trackers are electro-rnechanical/optical 

un i t s  consisting of ac  opt ica l  system, l i g h t  beam modulators, a photo-electrical 

detector, tracking electronics,  gimbal transdzcers, DC torquers, servo amplifiers, 

an outer gimbal resolver, a protective sun shutter,  and a supporting structure 

containing a machined reference-mounting surface. The tracker design i s  i l l u s -  

t r a t ed  schematically i n  F i g u e  10. 

The tracker i s  e s a e n t i d l y  a p b t o e l e c t r i c  astronomical telescope mounted 

on a 2-degree-of-freedom gimbal system. 

mirrorj  two star images are formed internal ly  by s p l i t t i n g  the convergent l i g h t  

Although employing a single objective 

in to  two beams. The beams are modulated by means of two apertured vibrating 

reeds located i n  the focal  planes of the objective mirror. The reeds are 

oriented so t h a t  t h e i r  projections are 90 degrees t o  one another and they 
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vibrate i n  the planes of the apertures. The modulated l i g h t  f lux i s  detected by 

a photomultiplier. 

indication of "star presence" and "star tracking" signals are derived by examina- 

t i on  of the f irst  and second harmonics of the modulating frequencies. To elimi- 

nate possible ambiguities, one reed vibrates a t  450 cps while the other operates 

a t  350 cps. 

Output signals f o r  operation of the gimbal torquers and f o r  

The star tracker telescopes have an effective 1 degree f i e l d  of view; a 

gimbal excursion of +45 degrees i s  permitted about each of the orthogonal gimbal 

axes. E&c$ tracker i s  capable of precision tracking of stars having a visual 

magnitude of two or brighter  with an accuracy of 30 seconds of m c .  

t i v e  mirror9,ma.de from beryll ign,are 3.5 inches i n  diameter and have an effect ive 

focal  length of 5 inches. 

t racker  i s  the gimbal transducer. 

"PJ3ASOLVERS". 

capacitances vary with shaf t  angle. 

signal proportionally t o  the rotation of the shaf t  on which it i s  mounted. 

t i v e  nu l l  detection of the reference and output signals provide on-off gate pulses 

f o r  a high freqzency co-aiter. 

an exact analogue of th.e s b f t  displacement. 

ing two sinusoidal metall ic patterns on the r i m  of a glass-bonded mica a i sc  4.5 

inches i n  diameter. 

ed by means of a rectangi;lar pat ter?  on a second disc  i n  close proximity t o  the 

f irst .  

them varies  i n  a sincsoidal manner. 

The objec- 

One of the more interest ing ' features  of the star 

The transducers employed by the OAO are  

These are multiLpole shaft-angle t o  phase-angle transducers whose 

The phasolver a lso phase-shifts a reference 

Posi- 

%ne r e s d t i n g  count represents phase s h i f t  and i s  

The transducer i s  formed by pr int-  

Electrostat ic  coupliig between these pat terns  i s  accomplish- 

A s  one disc. ro ta tes  with respect t o  the other, the capacitance between 

The pat terns  on each disc  are repeated 256 

times about each circumference. 

the capacitive couplicg goes through a complete cycle. 

of an e l e c t r i c a l  accuracy of no be t te r  than Oe1$, accuracy of 5 seconds of a rc  

i s  attained. To resolve ambiguities a r i s ing  from the f a c t  t ha t  the pat tern i s  

Thus, every 1 .4  degrees of re la t ive  rotation, 

By measuring techniques 



- 7 -  

repeated 256 times, a second s e t  of "coarse" metall ic pat terns  i s  a l so  included 

on the discs. 

degrees of mechanical revolution. 

These patterns vary i n  capacitance through a single cycle each 90 

Each OAO star tracker can be operated i n  a "command" mode as w e l l  as i n  a 

"tracking mode. 

i t s  own reference axis within 20 seconds of mc.  

ba l  transducers a c t  as feedback controls i n  a posit ion servo system. 

I n  the command mode, the tracker can be pointed re la t ive  t o  

I n  the tracking mode, the gim- 

During phase 3 of the i n i t i a l  s tabi l izat ion sequence, the trackers operate 

as follows. 

positioned (by stored commands) with respect t o  the spacecraft opt ical  axis, as 

shown i n  Figure 11, i n  such a m a n n e r  t ha t  a t  one specific roll angle, all six 

star trackers w i l l  simultaneously detect preselected guide stars. Due t o  occul- 

t a t ion  effects ,  it i s  conceivable that  all trackers w i l l  not detect  stars simul- 

taneously and there i s  also a d is t inc t  poss ib i l i ty  t h a t  as the observatory rolls 

about i t s  opt ica l  axis, one or more s t a r  trackers may detect stars other than the 

preselected guide stars on a random basis. 

command mode o r  locked gimbal position u n t i l  the  star tracker signal processor 

receives star presence signals simultaneously from four or more trackers. A t  

that instant ,  those trackers generating star presence signals are  unlocked and 

allowed t o  t rack t h e i r  guide stars. Spacecraft a t t i t ude  and control i s  trans- 

ferred t o  trackers a t  t h i s  point. 

roll rate condition and the gyros and sun sensors are switched "off". 

Each tracker, while the OAO is  ro l l ing  about tke sunline, i s  pre- 

However, all trackers remain i n  t h i s  

Then, the spacecraft i s  returned t o  a zero 

The f i n a l  phase of the i n i t i a l  orientation sequence i s  the mode i n  which the 

OAO rolls back t o  the unique roll angle  a t  which star presence w a s  i n i t i a l l y  

detected and the remaining trackers we unlocked. This operation i s  accomplished 

by using the difference between the actual star tracker gimbal angles exis t ing a t  

the completion of the roll rate nulling and the or ig ina l ly  commanded angles as 

error angle signals t o  the pitch, yaw, and roll f ine  wheels. When the e r ro r  
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signals have been reduced t o  zero, the spacecraft 's  pitch,  yaw, and roll axes 

w i l l  all be within 1 minute of arc of the command posit ion.  

l i z a t i o n  and or ientat ion sequence i s  now complete. 

The i n i t i a l  stabi- 

To summarize the i n i t i a l  sequence following booster separation, the random 

tumbling caused by separation action i s  reduced t o  a threshold by the rate 

gyros.  Simultaneously, the coarse sun sensing system causes the a f t  face of 

the OAO t o  point at  the sun. 

op t i ca l  axis in to  alignment with the sun l i n e .  

takes place. 

operation of the OAO i s  transferred to  star tracker control. 

The f i n e  sun sensors take over and bring the 

Roll about the sun l i n e  next 

The star trackers are activated and, when they detect  stars, 

Under the  worst conditions, the  i n i t i a l  sequence w i l l  be completed i n  5 

The OAO i s  now ready t o  begin reorientat ion maneuvers as required by hours. 

the experimental equipment. 

Reoriefitation 

The reorientat ion mode is  cleficed as that mode of operation i n  which the 

spacecraft i s  commanded t o  change i t s  or ientat ion and perform the required slew- 

ing maneuver. 

the coarse wheel controllers,  the programmer, and the spacecraft d i g i t a l  data 

processor. 

The devices involved i n  t h i s  mode, are  the coarse iner t ia ;  wheels, 

Reorientation i s  always in i t i a t ed  by a command from the data processor's 

command storage. The command consists of two signals.  

s e l e c t s  the control axis about which the  slewing maneuver i s  t o  take place, 

while t he  other determines direction of slews. 

One of the signals 

Reorientation i s  performed i n  

w h a t  might be termed a llpseudo=-oper--loopl' fashion. 

any control axis is  achieved by act ivat ing the  coarse i n e r t i a  wheel motor whose 

axis of ro ta t ion  i s  p a r a l l e l  t o  the desired control axis. 

of degrees of ro ta t ion  about the spacecraft axis i s  related t o  the number of 

Spacecraft ro ta t ion  about 

The required number 
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degrees of rotat ion of the coarse i n e r t i a  wheel by the r a t i o  of the moment of 

i n e r t i a  of the spacecraft about that  axis, t o  the moment of i n e r t i a  of the 

coarse wheel, 

required i s  transmitted t o  the coarse wheel controller from the command storage. 

The number of revolutions t o  be accomplished before torque reversal as w e l l  as 

the t o t a l  number of revolutions f o r  the en t i r e  s l e w  are  placed i n  a reg is te r  and 

the wheel accelerated. 

be counted-down i n  sequential binary fashion. 

torque reversal  i s  reached, the polar i ty  of the motor i s  reversed. 

celerates  the wheel and, theoretically,  should cause the wheel t o  stop when the 

t o t a l  number of revolutions has been attained. 

at  the proper t i m e ,  an electro-magnetic brake i s  activated when the command 

reg i s t e r  has been counted-down t o  zero and forces the wheel t o  a complete h a l t  

i n  less than one revolution, thus ensuring tha t  the e r rors  a t  the end of s l e w  

are minimized. 

The slewing command consisting of the number of wheel rotat ions 

A magnetic revolution counter enables the rotat ions t o  

When the number of counts t o  

This de- 

To assure tha t  the motor stops 

The OAO's command storage uni t  can s tore  1 5  three-axis pointing commands 

per  o rb i t .  

ammand consists of two 32-bit words. 

The format f o r  commands i s  shown i n  Figure 12. Each a t t i tude  change 

The f irst  two b i t s  of each word are f o r  

B i t  3 of the f irst  word indicates whether the word synchronization purposes. 

i s  a stored command o r  a command t o  be executed immediately. 

of the f irst  word indicate the command execution time f o r  stored commands. 

14  through 20 indicate the command memory address f o r  the command. 

24 denote the class  of command (hence the system can decode f i f t e e n  other kinds of 

commands as w e l l  as the slewing command). B i t s  25 through 27 select  the appropri- 

ate i n e r t i a  wheel; the remaining bi ts  i n  the first word a re  not used i n  the slewing 

commands. B i t  3 of the second word indicates whether the wheel i s  t o  ro ta te  clock- 

w i s e  o r  counterclockwise, while bits  4 through 17 indicate the number of rotations 

before torque reversal .  

braked are  contained i n  b i t s  18 through 32. 

B i t s  4 through 13 

B i t s  

B i t s  21 tl.ml&gh 

The t o t a l  number of rotat ions before the wheels are 
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Shown i n  Figure 13 are a f e w  de ta i l s  of the  momentum packages. Each 

momentum package contains both coarse and f i n e  i n e r t i a  wheels as w e l l  as a 

rate are. 

concept was devised t o  ease the  problem of alignment during in s t a l l a t ion  i n  the  

spacecraft. The wheels are "inside-out" induction motors. The coarse wheel has 

a s ta l l  torque capabi l i ty  of 32 ounce inches while t he  f i n e  wheel's s ta l l  torque i s  

One package i s  in s t a l l ed  along each OAO control axis. The package 

2 ounce inches. Total OAO slewing capabili ty i s  

from the OAO's solar  arrays and i s  approximately 

Coarse Pointine: Mode 

limited by the power available 

300 t o t a l  degrees per day. 

The coarse pointing o r  a t t i t ude  hold mode i s  defined as that  mode of opera- 

t i o n  during which the spacecraft is  commanded t o  maintain an a rb r i t r a ry  but pre- 

determined orientation with respect t o  i n e r t i a l  space, without benefi t  or a ta rge t  

star along the  l i n e  of s ight  of t he  spacecraft op t ica l  axis. The devices used 

dui*ing t h i s  mode are shown i n  Figure 14. 

tracking star t racker  u t i l i z e s  the  telescope error  signals t o  drive the  gimbals 

such as t o  maintain the telescope l i ne  of s ight  pointing at  i t s  guide star. 

angles of each star tracker are provided i n  d i g i t a l  form by the phasolvers mounted 

on each gimbal axis .  

w e l l  as the  command angles from the data processor and, from these, generates 

e r ror  s ignals  i n  analog form f o r  each of t he  twelve gimbals. 

corresponding t o  the  difference between the  commanded and actual  angles of t he  

inner gimbal of each star tracker are transformed by resolvers i n t o  torque commands 

t o  the star tracker gimbal axes. 

In  the coarse pointing mode, each 

The 

The d ig i t i ze r  logic unit  accepts the phasolver outputs as 

The er ror  s ignals  

Generally there are three  outputs (one for  each of t he  control axis) from 

a star t racker  and s i x  star trackers.  This  signal redundancy i s  averaged i n  the  

star t racker  s ignal  processor, and the f ine  wheels are driven i n  accordance w i t h  

t h e  average e r ror  s ignal  output f o r  each axis.  The f i n e  wheel and j e t  controller 
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receives the  signal processor outputs and commands f ine  wheel rotat ion.  Using 

the coarse pointing system, the OAO can be pointed t o  any desired posi t ion within 

an accuracy of 1 minute of arc. The OAO has been designed t o  maintain t h i s  a t t i -  

tude within 1 5  seconds of a rc  f o r  periods of 50 minutes of t i m e .  

Fine Pointing Mode 

The f i n e  pointing mode i s  defined as that mode of operation i n  which the 

p i t ch  and yaw actuator channels are controlled by e r ro r  signals from a f ine  

e r ro r  sensor which i s  an in tegra l  part of the experimental optics.  

experiments requiring accuracies greater than 1.0 minute of a r c  w i l l  be equipped 

with such a sensor. 

mode except that p i tch  and yaw control signals are derived d i r ec t ly  from the 

e r r o r  sensor instead of from the gimbaled star trackers.  

sensor is instal led,  the OAO can maintain the pointing posi t ion within 50.1 

second of arc. 

Only those 

Operation i n  -this mode i s  ident ica l  t o  the coarse pointing 

When an appropriate 

Momentum Unloading Mode 

The OAO i n  o r b i t  i s  subjected to  a var ie ty  of disturbance torques. The 

most predominant of these i s  the gravi ta t ional  torques due t o  i n e r t i a l  unblarice 

of the  observatory. 

g e n e r a ,  these torques a c t  is a symmetric fashions and w i l l  require continual 

accelerat ion of the f ine  wheels t o  maintain any given orientation. Momentum 

sa tura t ion  of the f i n e  wheels would thus result except f o r  the f a c t  t ha t  the 

OAO i s  provided with two separate momentum unloading systems f o r  the removal of 

accumulated angular momentum. The l o w  l eve l  gas jets are the primary unloading 

Figure 1 5  shows the summation of the predicted torques. I n  

system. 

b i l i t y  of 0.00678 foot  pound. 

speed reaches 40% of i t s  m a x i m u m  speed and a "permission t o  unload" signal i s  

Each low level j e t  has a thrust  of 0.002 foot  pound and a torque capa- 

Firing of the j e t  i s  actuated when the f ine  wheel 
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available. 

The wheels "despin" against the jet  torque u n t i l  5% speed i s  reached, a t  which 

time the j e t s  are turned of f .  The system design i s  such tha t  unloading w i l l  

occur no more frequently than once every l-& orbi t s .  

The wheels are  unloaded unconditionally a t  85% of maximum speed. 

The second means of unloading stored momentum is the magnetic unloading 

system. 

ponents of the cross product of the angular momentum vector and the ea r th ' s  

magnetic f i e l d  vector. 

product vector are  applied t o  a s e t  of three permeable-core co i l s  which i n  turn 

create a controllable internal  magnetic f i e l d .  

l ed  f i e l d  and the ea r th ' s  f iF ld  provides the torque which removes momentum f r o m  

the i n e r t i a l  wheels, 

A magnetic unloading processor i s  used t o  continually compute the com- 

Currents proportional t o  the components of the cross- 

The interact ion of t h i s  control- 

The magnetic system w i l l  be continuously operative. 

Boresighted S tar  Tracker and TV System 

The remaining components i n  the s tab i l iza t ion  system are the  boresighted 

star tracker and the TV system. 

but i s  r ig id ly  attached t o  a mount along the OAO's optical  axis. 

diSSeCbtube i s  the active element. It employs electromagnetic scanning prin- 

ciples,  and i s  capable of locking onto ta rge t  stars and providing closed loop 

control over the f ine  wheel system i n  much the same manner as the experimenter's 

f i ne  e r ro r  sensor. 

such t h a t  the boresighted tracker can be used t o  of fse t  the OAO through s m a l l  

angles. 

star tracker control system. 

The boresighted star tracker i s  not gimballed, 

An image 

Electronic offset  provisions are provided out t o  kl.5 degrees, 

Hence the boresighted star tracker i s  a valuable backup t o  the main 

The TV camera contains a ser ies  of r e t i c l e  l i nes  which, when reproduced on 

the ground, w i l l  enable the ground operator t o  obtain not only a picture  of the 

sky bu t  a superimposed gridwork. 

the grid,  spacecraft orientation can be obtained with a precision of approximately 

5 minutes of arc .  

By measuring star displacement with respect t o  
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DYNAMIC TESTING OF THE S & C SYSTEM 

One of the major problems i n  the development of a s a t e l l i t e  such as the OAO 

i s  t h a t  of proving and demonstrating specified system performance under r e a l i s t i c  

environmental conditions p r io r  t o  launch. 

t i on  and control system i n  a ground environment which accurately simulates the 

o rb i t a l  environment i s  a challenging and d i f f i c u l t  task.  

OAO, t h i s  tes t ing  becomes more complex because of the exceedingly t i g h t  accuracy 

requirements. 

The dynamic tes t ing  of any s tabi l iza-  

I n  the case of the 

To test s tab i l iza t ion  systems properly, a dynamic simulator must be employed 

To demonstrate t h a t  which can be operated i n  a precisely controlled environment. 

the spacecraft corild a t t a i n  the required acczracy under conditions comparable t o  

those encountered i n  orb i t ,  it w a s  necessary t o  design an ultra-precise a t t i tude  

reference system, which had the capabili ty of measuring a t t i t ude  t o  an order of 

magnitude greater than the specified performance accuracy. A feature  of the 

o r b i t a l  environment which i s  most d i f f i cu l t  t o  reproduce on ear th  i s  the low 

s t a t i c  and dynamic f r i c t ion  force. The dynamic f r i c t i o n  torque leve ls  which 

can be tolerated are on the order of 10,000 dyne centimeters, a t  an angular 

rate of low3 deg. see. 

becomes so s ignif icant  as t o  make a1= evaluation of the performance of the con- 

t r o l  system impossible. 

A t  higher levels, the damping e f f ec t  of these torques 

The only type of suspension or support having the low f r i c t i o n  coefficients 

desired i s  an air-bearing. Since a complete, 3-degree-of-freedom simulation of 

the s tab i l iza t ion  and control system operation i s  required, a spherical air- 

bearing w a s  designed which supports a platform on which the en t i r e  S & C system 

and a l l  accessory equipment i s  mounted. An air-bearing produces adequately lOW 

f r i c t i o n  torques. If not properly designed, it can also generate torques which 

a c t  as disturbance torques on the system. These torques are caused by the turbine 
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ef fec t  of the air flow around the bearing. 

expected i n  o rb i t  w i l l  not exceed an average of 2500 dyne-an, the random torques 

produced by the air-bearing should be a t  least one order of magnitude smaller i n  

order not t o  introduce undesirable excitation terms on the control loop. 

liminary tests on the air bearings designed f o r  the dynamic tes t ing  of the OAO, 

as  w e l l  as exhaustive t e s t s  on a number of smaller air  bearings designed fo r  

CAO development and f o r  use on other projects,  indicate that such low torque 

levels are  attainable e 

Since the disturbance torques 

Pre- 

The air  bearing t o  be used i n  the 3ynamic T e s t  Fac i l i ty  i s  a 22 inch diame- 

ter  stainless s t e e l  b a l l  which has been polished t o  a sphericity of less than 

one ten-thousanth of an inch (see Figure 16). 

The socket and pedestal supporting the a i r  bearing a re  designed t o  allow 

the a i r  b e a r i r i  t o  ro ta te  f reely about the ve r t i ca l  axis while l imit ing p i t ch  

and yaw movements t o  +3O degrees. 

from which the nitrogen supplied t o  the a i r  bearing i s  scavenged. 

i s  a l so  of stainless steel, but has an epoxy r e s in  l i n e r  which was cast  around 

the f inished bearing. 

bearing when not i n  use or  i n  the event of an air  supply failure. 

!The socket incorporates a plenum chamber 

The socket 

An automatic caging mechanism i s  provided t o  support the 

The air  bearing platform i s  i l l u s t r a t ed  i n  Figure 17. I t s  dimensions are 

109 inches across the arms and 80 inches deep. 

and the  moments of i n e r t i a  exactly duplicate those of the f l i g h t  observatories. 

The platform i s  capable of mounting no only the s tabi l izat ion system, but a lso 

i s  designed t o  be able t o  accommodate the eritire OAO electronics system, includ- 

The t o t a l  weight i s  5000 pounds, 

ing data processing, communications, and power supply. It i s  intended t h a t  the 

e n t i r e  electronics complement of  a l l  f l i g h t  observatories will be mounted on the 

t ab le  and subjected t o  acceptance t e s t s  before ins ta l la t ion  i n  the f l i g h t  struc- 

t u re ,  To demonstrate convincingly the performance capabi l i t ies  of the s t ab i l i -  

zat ion and control system, the o rb i t a l  disturbance torque environment must a lso 
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be simulated. A t y p i c a l  disturbance torque p ro f i l e  over one o rb i t  was shown on 

a previous s l i de .  The torques about each of the  axes a re  not equal and are ,  i n  

general, functions of the spacecraft a t t i t ude  r e l a t i v e  t o  c e l e s t r a l  coordinates. 

The complete three-axis simulation of the disturbance torque prof i les  corres- 

ponding t o  any spacecraft a t t i t u d e  requires t h e  a b i l i t y  t o  apply variable to r -  

ques about each of the  platform axes, up t o  a l e v e l  of about 2500 dyne centime- 

ters. A technique applying the  disturbance torques t o  the platform by external 

means w a s  developed and has been demonstrated on the  smaller air bearing tab le .  

Essentially,  the concept employed was  t o  consider t he  sper ica l  bearing as the  

ro tor  of an induction motor and place a s e t  of three orthogonal wire-wound s t e e l  

cores i n  the bearing and thus t o  generate motor torques. The currents i n  the 

windings can be externally controlled and any desired torque p ro f i l e  generated 

by programing t h e  current flow as functions of t i m e ,  using analog curve followers. 

Since the air-bearing i s  made of stainless steel, the  induced currents are low, 

and d is tor t ion  of the  applied magnetic f i e l d  caused by the induced currents and 

by motion of the bearing i s  negligible. Thus, t he  disturbance torque generation 

i s  e s sen t i a l ly  uncoupled f romthe  dynamics of t he  control system and vehicle. 

A s  discussed earlier, an important control system function i s  the unloading 

of the  i n e r t i a  wheel momentum by means of a s e t  of magnetic torquing co i l s  which 

in t e rac t  w i t h  t he  e a r t h ' s  magnetic f i e ld .  To demonstrate the  effectiveness of 

t h i s  technique, the  magnitude, direction r e l a t ive  t o  spacecraft coordinates, 

and t i m e  variation of the  ea r th ' s  magnetic f i e l d  which the  OAO w i l l  encounter i n  

o r b i t  must be simulated i n  the  dynamic tes t  f a c i l i t y .  

means of th ree  orthogonal sets of 173 foot  diameter Helmholtz co i l s ,  which sur- 

round t h e  simulator platform. 

This i s  accomplished by 

Each c o i l  has two s e t s  of windings mounted on it. 

One se t  i s  employed t o  cancel the  ambient magnetic f i e l d  existing at the  s i m u l a -  

t o r ,  while the  second s e t  i s  used t o  simulate the  o r b i t a l  magnetic f i e l d  and i t s  
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variation w i t 5  time. The magnetic f i e l d  p ro f i l e  i s  a lso generated by program- 

ming the Helmholtz co i l  currents as time functions using analog curve followers. 

The s i z e  of the co i l s  i s  such that the magnetic f i e l d  a t  any instant  does not 

vary by more thanwgauss  over t'ne ent i re  surface of the simulator platform. 

Analytical investigation of the s t r u c t u x d  and thermal character is t ics  of 

the simulator indicated, and experiment confirmed, that disturbance torques, 

exceeding the capabili ty of the control system t o  counteract, could be obtained 

as  a r e su l t  of minute mass unbalance, anisoelast ic i ty ,  and thermal d is tor t ion  

i n  the simulator platform. For example, since the platform with a l l  equipment 

mounted on it weighs approximately 7000 lbs.  the center of m a s s  must be within 

10-7 f t  of the center of suspemion so that. the unbalance torque w i l l  be less 

than 10,000 dyne-cm. 

thermal expansion and compensating fo r  anisoelast ic i ty  of the structure so as 

t o  yield reasonably low restor ing torqJes a t  all table  a t t i tudes  are so com- 

plex t h a t  only spot balancing procedures can be adopted. 

tab le  w i l l  be precisely balanced at a par t icu lar  a t t i tude .  

of the f ine  and coarse att i5ade hold modes w i l l  be performed a t  t h a t  a t t i tude .  

Extensive investigations were made of tke e f f ec t  of atmosphere a t  ambient 

The problems of balancing the table,  equalizing the 

Specifically, the 

All dynamic t e s t ing  

pressure surrounding the air-hearing and platform. 

viscous a i r  drag were foxd t o k e  small ir, comparison t o  the damping fac tor  

incorporated ir;to the control loop. Excessive disturbance torques were, how- 

ever, produced by the unequal heating and thermal expansion of the air i n  the 

v i c in i ty  of heat producing sources on the platform. Experiments performed on 

thz 10" air-bearing tab le  showed that a 28 w a t t  unbalance i n  power diss ipat ing 

elements on the  table  generated as high as 25,000 dyne-cm of hydrostatic ais- 

turlance torque. 

kept below 20 w a t t s  on the dynamic simulator, it w a s  decided t o  enclose the 

e n t i r e  f a c i l i t y  within a 22 foot diameter aluminum chamber, and t o  operate at 

an ambient pressme of 750 microns. 

Damping ef fec ts  due t o  

Since it i s  estimated t h a t  the thermal unbalance cannot be 
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The development of a suitable a t t i tude  reference and precision readout 

system proved t o  be a d i f f i c u l t  task. To simulate a l l  the operational modes of 

the OAO s tabi l izat ior ,  and control system, both solar  and s t e l l a r  references are 

required. The solar simulator presented some exceedingly complex design prob- 

l e m s ,  since a very well defined, uniform source with anihtensityapproaching 

that of the sun and a s ize  such as t o  subtend roughlythe same angle as the 

sun i s  required t o  successfully simulate the solar  sensing phases of the i n i t i a l  

s tab i l iza t ion  mode. 

lamp was sui table  for t h i s  application. The solar  simulator developed f o r  the 

OAQ dynamic t e s t  f a c i l i t y  employs an opt ical  technique t o  produce a source of 

illumination having the required characterist ics.  Eighteen high-intensity Xenon 

arc  lamps are  mounted inside a spherical hoasing having a highly re f lec t ive  w a l l  

coating. 

which represents the actual l i g h t  source t o  the solar  sensors. 

t o  generate 5646 of the solar i l l-mination i n  the 0.6 t o  1 . 2  micron range. 

No exis t ing s o l a r  simulator o r  high intensi ty  carbon arc  

The luminous flux e x i t s  from the housing through a 6.5 inch aperture, 

It is  possible 

The s t e l l a r  reference system consists of a s e t  of f i ve  16 inch diameter 

high-precision opt ical  collimators mounted inside the chamber. These co l l i -  

mators w i l l  simulate stars between magnitudes of -2.0 and -6.0. 

To achieve the required precision of platform a t t i tude  readout, a two-stage 

Monitoring of the f i c e  pointing mode requires readout system had t o  be devised. 

a readout accuracy of be t t e r  than 0.1 second of arc.  This precision can be at- 

ta ined only througlithe use of kigh quality, narrow f i e l d  electronic autocolli-  

mators, using platform mounted, optically f l a t  mirrors as the re f lec t ive  medium. 

Since dynamic readout a t  arbi t rary platform a t t i t ude  i s  not feasible  with these 

devices, high precision readout w i l l  be performed only a t  the a t t i t ude  of f ine  

(or coarse) pointing selected f o r  a par t icu lar  t e s t  run. 
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An a l lda t t i tude  readout system w a s  developed t o  determine table  a t t i t ude  

t o  a somewhat lower accuracy during t r a x i e n t s  of the f i n e  and coarse pointing 

modes o r  during reorientation. This system employs 3 sheets of transparent 

polarized material which are mounted on the platform and serve t o  polarize the 

output of three l i g h t  sources arranged orthogonally t o  each other on the pedestal 

of the air  bearing. 

mounted i m i d e  the chamber and follow the rotat ion of the polarizing sheets 

(and thus of the platform), indicating platform a t t i tude .  

Three se t s  of servo dri-ren photosensitive detectors are 

The complete dynamic test  f a c i l i t y  i s  depicted i n  Yigure 18. The major 

elements previo-mly described are: 

i s  f loa ted  i n  i t s  pedestal on a f i l m  of nitrogen continuously fed through a 

pedestal  a t  low pressure; (2) the air-bearing table,  011 which are mounted the 

components under test; (3) collimated l i g h t  sources which provide simulated 

stars; (4) Helmholtz co i l s  which simulate the ea r th ' s  magnetic f i e l d  a t  o rb i t a l  

a l t i tudes ;  ( 5 )  the air  bearing torquer; and (6) the solar simulator m a t e d  out- 

side the chamber. A l l  of t h i s  equipment with the exception of the solar  simula- 

t o r  i s  i n  the large vacuum chamber which i s  mounted i n  turn on a 240,000 pound 

seismic fo-mdation. AdjaceEt t o  tbe simulator i s  the control room which w i l l  

house a duplicate of tlce central  control s ta t ion  t o  be u t i l i zed  a t  the Goddard 

Space Fl ight  Center during actual  o rb i t a l  operations. 

(1) the 22 inch diameter a i r  bearing, which 

Figire  19 skows the central  control consoles f o r  the GAO system. Another 

p a r t  of the central  eoritrol s t a t i o n  i s  a large d i g i t a l  computer, as well as a 

smaller computer and a host of data processing equipment. 

The f a c i l i t y  j u s t  described is the ultimate f a c i l i t y  intended f o r  use i n  

the OAO program. 

been employed i n  the program, notably a 10-inch f a c i l i t y .  This la t ter  equipment 

has been used t o  cocduct dynamic tests on all of the previously described opera- 

t i o n a l  modes other than the magnetic unloading mode. 

Several s m a l l e r  f a c i l i t i e s  of l e s se r  capabi l i t ies  have also 
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The t e s t s  thus far have been on an individual basis.  Xowever, i n  the next 

f e w  weeks, t e s t ing  will start on the en t i r e  s t ab i l i za t ion  sequence from booster 

separation through solar acquisit ion and orientation, slewing maneuvers t o  

coarse obtaining, and f i n a l l y  t o  the f i n e  pointing mode. 

Summary 

Summarizing, t'ne OAG s tab i l iza t ion  and coctrol  system has been designed t o  

w h a t  we believe t o  be the mostexacting requirements ye t  imposed on any satell i te.  

Based on t e s t s  of the bardware now i n  being, we should be able t o  point the OAO 

t o  any positior_ on the c e l e s t i a l  sphere with an accuracy of 1 

and t o  maintain that positior, f o r  long periods of time. 

able t o  maintain lock-on t o  t a rge t  stars t o  tenths  of seconds of arc .  By com- 

bining these s t ab i l i za t ion  accuracies with the information gathering capabili- 

t i e s  of astronomical instruments a t  an a l t i t ude  of f i v e  hundred m i l e s  above the  

ea r th ' s  surface, we may expect t o  see the science of astronomy enjoy an 

unprecedented e ra  of advancement i n  the next decade. 

minute of a r c  

We should fur ther  be 
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